Freestone dykes—an alkali-rich Jurassic dyke population in eastern Victoria

A. SOESOO†, P. D. BONS1 AND M. A. ELBURG2

1 Department of Earth Sciences, Monash University, Clayton, Vic. 3168, Australia.

2 Department of Geology and Geophysics, University of Adelaide, SA 5005, Australia.

SUPPLEMENTARY PAPERS

* Tables 2 and 3 [indicated by an asterisk (*) in the text and listed at the end of the paper] are Supplementary Papers lodged with the National Library of Australia (Manuscript Section); copies may be obtained from the Business Manager, Geological Society of Australia.

† Corresponding author: <asoesoo@artemis.earth.monash.edu.au>

Table 2 Representative chemical analyses of clinopyroxene (Cpx), olivine (Ol), amphibole (Amph), and plagioclase (Plag) of the Freestone alkali-basaltic dykes. Total iron as FeO, except plagioclase where total iron is Fe2O3.

Table 3 Incompatible trace-element ratios of Freestone and Tambo (Eberz 1987) alkali-basaltic dykes, and representative Newer Volcanics tholeiitic (f338), transitional (f111) and alkali (f253) lavas, western Victoria; (Price et al. 1997). EMT-type mantle reservoir data are from Saunders et al. (1988) and Weaver (1991).
<table>
<thead>
<tr>
<th></th>
<th>Cpx</th>
<th>Cpx</th>
<th>Cpx</th>
<th>Cpx</th>
<th>Ol</th>
<th>Ol</th>
<th>Amph</th>
<th>Amph</th>
<th>Amph</th>
<th>Amph</th>
<th>Plag</th>
<th>Plag</th>
<th>Plag</th>
<th>Plag</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.80</td>
<td>49.40</td>
<td>46.80</td>
<td>52.10</td>
<td>39.30</td>
<td>39.40</td>
<td>38.60</td>
<td>39.67</td>
<td>38.50</td>
<td>38.60</td>
<td>55.30</td>
<td>55.60</td>
<td>53.00</td>
<td>55.20</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.53</td>
<td>1.42</td>
<td>2.47</td>
<td>0.07</td>
<td>na</td>
<td>na</td>
<td>7.18</td>
<td>6.21</td>
<td>5.50</td>
<td>5.65</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.01</td>
<td>4.16</td>
<td>7.51</td>
<td>5.05</td>
<td>0.92</td>
<td>1.37</td>
<td>13.80</td>
<td>10.11</td>
<td>13.10</td>
<td>13.10</td>
<td>26.40</td>
<td>26.10</td>
<td>29.00</td>
<td>26.50</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.13</td>
<td>0.00</td>
<td>1.14</td>
<td>0.72</td>
<td>na</td>
<td>na</td>
<td>0.09</td>
<td>0.06</td>
<td>0.05</td>
<td>0.10</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>FeO</td>
<td>8.55</td>
<td>9.14</td>
<td>6.89</td>
<td>3.08</td>
<td>21.90</td>
<td>19.10</td>
<td>10.10</td>
<td>16.94</td>
<td>12.60</td>
<td>11.80</td>
<td>0.58</td>
<td>0.48</td>
<td>1.12</td>
<td>0.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.43</td>
<td>0.36</td>
<td>0.26</td>
<td>0.41</td>
<td>na</td>
<td>na</td>
<td>0.13</td>
<td>0.18</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>14.10</td>
<td>13.40</td>
<td>12.80</td>
<td>17.00</td>
<td>38.00</td>
<td>39.20</td>
<td>11.50</td>
<td>13.50</td>
<td>10.70</td>
<td>11.10</td>
<td>0.40</td>
<td>0.08</td>
<td>0.12</td>
<td>0.30</td>
</tr>
<tr>
<td>CaO</td>
<td>20.40</td>
<td>20.30</td>
<td>21.20</td>
<td>21.90</td>
<td>0.17</td>
<td>0.32</td>
<td>11.50</td>
<td>8.35</td>
<td>11.40</td>
<td>11.40</td>
<td>9.80</td>
<td>9.70</td>
<td>12.70</td>
<td>11.10</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.27</td>
<td>1.50</td>
<td>1.05</td>
<td>1.49</td>
<td>0.62</td>
<td>1.61</td>
<td>2.54</td>
<td>0.99</td>
<td>2.58</td>
<td>2.81</td>
<td>5.40</td>
<td>5.55</td>
<td>3.75</td>
<td>4.79</td>
</tr>
<tr>
<td>K₂O</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1.41</td>
<td>1.48</td>
<td>1.72</td>
<td>1.77</td>
<td>0.58</td>
<td>0.83</td>
<td>0.34</td>
<td>0.67</td>
</tr>
<tr>
<td>NiO</td>
<td>0.16</td>
<td>0.13</td>
<td>0.03</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.32</td>
<td>0.05</td>
<td>0.00</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Total</td>
<td>99.99</td>
<td>99.45</td>
<td>99.89</td>
<td>101.69</td>
<td>101.34</td>
<td>101.36</td>
<td>97.35</td>
<td>98.04</td>
<td>96.28</td>
<td>96.51</td>
<td>98.59</td>
<td>98.45</td>
<td>100.20</td>
<td>100.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe₂⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ni</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.82</td>
<td>0.04</td>
<td>0.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.07</td>
<td></td>
</tr>
<tr>
<td>1.86</td>
<td>0.04</td>
<td>0.19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>0.07</td>
<td>0.33</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>0.00</td>
<td>0.21</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>4.03</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>0.00</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>5.76</td>
<td>0.80</td>
<td>2.44</td>
<td>0.18</td>
<td>0.24</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>15.72</td>
<td></td>
</tr>
<tr>
<td>5.99</td>
<td>0.70</td>
<td>2.37</td>
<td>1.81</td>
<td>2.37</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>15.69</td>
<td></td>
</tr>
<tr>
<td>5.87</td>
<td>0.63</td>
<td>2.36</td>
<td>2.13</td>
<td>2.36</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>15.86</td>
<td></td>
</tr>
<tr>
<td>5.86</td>
<td>0.64</td>
<td>2.43</td>
<td>2.13</td>
<td>2.43</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>15.90</td>
<td></td>
</tr>
<tr>
<td>2.53</td>
<td>0.73</td>
<td>1.43</td>
<td>1.84</td>
<td>1.43</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>2.55</td>
<td>0.76</td>
<td>1.48</td>
<td>1.84</td>
<td>1.48</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>2.55</td>
<td>0.83</td>
<td>2.51</td>
<td>1.86</td>
<td>2.51</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.99</td>
<td></td>
</tr>
</tbody>
</table>

EN | 42 | 40 | 40 | 49 | na |
FS | 14 | 15 | 12 | 5 | na |
WO | 44 | 44 | 48 | 46 | na |
Mg#/An% | 75 | 72 | 77 | 91 | 76 | 79 | 67 | 59 | 60 | 63 | 50 | 49 | 65 | 56 |

na, not analysed.
Table 3 Incompatible trace-element ratios of Freestone and Tambo (Eberz 1987) alkali-basaltic dykes, and representative Newer Volcanics tholeiitic (f338), transitional (f111) and alkali (f253) lavas, western Victoria; (Price et al. 1997). EMI-type mantle reservoir data are from Saunders et al. (1988) and Weaver (1991).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Zr/Nb</th>
<th>La/Nb</th>
<th>Ba/Nb</th>
<th>Ba/Th</th>
<th>Rb/Nb</th>
<th>K/Nb</th>
<th>Th/Nb</th>
<th>Th/La</th>
<th>Ba/La</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestone Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS04</td>
<td>4.82</td>
<td>0.46</td>
<td>16.56</td>
<td>1030.61</td>
<td>1.2295</td>
<td>380</td>
<td>0.02</td>
<td>0.0349</td>
<td>35.943</td>
</tr>
<tr>
<td>FS06</td>
<td>3.51</td>
<td>0.45</td>
<td>13.78</td>
<td>1033.82</td>
<td>0.902</td>
<td>238</td>
<td>0.01</td>
<td>0.0294</td>
<td>30.433</td>
</tr>
<tr>
<td>FS111</td>
<td>4.493</td>
<td>-</td>
<td>15.73</td>
<td>949.55</td>
<td>1.1642</td>
<td>354</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tambo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAM13</td>
<td>3.471</td>
<td>-</td>
<td>15.59</td>
<td>-</td>
<td>0.8235</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Newer Volcanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f338</td>
<td>5.8</td>
<td>1.5</td>
<td>12.45</td>
<td>113.182</td>
<td>0.85</td>
<td>315</td>
<td>0.11</td>
<td>0.0736</td>
<td>8.3278</td>
</tr>
<tr>
<td>f111</td>
<td>6.84</td>
<td>0.89</td>
<td>13.2</td>
<td>75</td>
<td>1.28</td>
<td>392</td>
<td>0.18</td>
<td>0.1982</td>
<td>14.865</td>
</tr>
<tr>
<td>f253</td>
<td>4.569</td>
<td>0.62</td>
<td>6.385</td>
<td>74.1071</td>
<td>0.5231</td>
<td>211</td>
<td>0.09</td>
<td>0.1379</td>
<td>10.222</td>
</tr>
<tr>
<td>EMI</td>
<td>4.2-11.5</td>
<td>0.86-1.19</td>
<td>11.4-17.8</td>
<td>103-154</td>
<td>0.88-1.17</td>
<td>213-432</td>
<td>0.105-0.122</td>
<td>0.107-0.128</td>
<td>13.2-16.9</td>
</tr>
</tbody>
</table>