Groundwater residence time in a dissected and weathered sandstone plateau: Kulnura–Mangrove Mountain aquifer, NSW, Australia

D. I. CENDÓN1,2,3*, S. I. HANKIN1, J. P. WILLIAMS4, M. VAN DER LEY1,2, M. PETERSON1,3, C. E. HUGHES1, K. MEREDITH1, I. T. GRAHAM2, S. E. HOLLINS1, V. LEVCHENKO1 AND R. CHISARI1

1 Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, 2232, NSW, Australia
2 School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales (UNSW), Sydney, NSW 2052, Australia
3 Connected Waters Initiative, School of BEES, UNSW, Australia
4 NSW Office of Water, PO Box 340, 2250, Gosford, NSW, Australia

*Corresponding Author contact: dce@ansto.gov.au; Tel: +61 2 97173937

SUPPLEMENTARY PAPERS

* Tables S1–3 [indicated by an asterisk (*) in the text and listed at the end of the paper] are Supplementary Papers; copies may be obtained from the Geological Society of Australia's website (www.gsa.org.au), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (http://nla.gov.au/nla.arc-25194).

Table S1 Groundwater wells with number corresponding to the NOW monitoring well number, sampling date, elevation, total well depth, screened interval and abbreviated water type.

Table S2 SIROQUANT calculated proportions (wt%) for the different whole rock samples. Well location can be seen in Figure 1. Qtz = quartz, Clay = kaolinite + illite + interstratified illite/smectite, Goe = goethite, Rut + Ana = rutile + anatase, Sid = siderite, Mic = microcline, others depending on samples are Ank = ankerite, Mus = muscovite, Cal = calcite.

Table S3 Estimated average vertical hydraulic conductivity, K_v, between screens (or the ground surface) where SWL’s, apparent ages and samples are available.
REFERENCES

Table S1 Groundwater wells with number corresponding to the NOW monitoring well number, sampling date, elevation, total well depth, screened interval and abbreviated water type.

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sampling Date</th>
<th>Elevation (A.H.D.) (m)</th>
<th>Depth (m)</th>
<th>Screen (m)</th>
<th>SWL (m toc)</th>
<th>Water type</th>
</tr>
</thead>
<tbody>
<tr>
<td>271008–1/07</td>
<td>31/05/2007</td>
<td>324</td>
<td>51</td>
<td>45–48</td>
<td>20.8</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271008–1/08</td>
<td>3/06/2008</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271008–2/07</td>
<td>31/05/2007</td>
<td>324</td>
<td>111</td>
<td>105–108</td>
<td>32.6</td>
<td>Ca–HCO₃</td>
</tr>
<tr>
<td>271008–2/08</td>
<td>11/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>12.6</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271008–2/09</td>
<td>19/08/2009</td>
<td></td>
<td></td>
<td></td>
<td>45.1</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271008–2/10</td>
<td>19/02/2010</td>
<td></td>
<td></td>
<td></td>
<td>39.7</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271008–2/12</td>
<td>20/02/2012</td>
<td></td>
<td></td>
<td></td>
<td>10.9</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271009–2/07</td>
<td>1/06/2007</td>
<td>254</td>
<td>100</td>
<td>94–97</td>
<td>21.6</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>271009–2/08</td>
<td>11/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>16.6</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>271009–3/09</td>
<td>22/10/2009</td>
<td>254</td>
<td>150</td>
<td>141–147</td>
<td>17.8</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271009–3/10</td>
<td>19/02/2010</td>
<td></td>
<td></td>
<td></td>
<td>31.8</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–1/07</td>
<td>16/05/2007</td>
<td>314</td>
<td>35</td>
<td>29–32</td>
<td>14.4</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–1/08</td>
<td>10/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>11.4</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–2/06</td>
<td>11/05/2006</td>
<td>314</td>
<td>70</td>
<td>64–67</td>
<td>25.6</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–2/07</td>
<td>16/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>23.2</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–2/08</td>
<td>10/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>18.9</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–2/09</td>
<td>19/08/2009</td>
<td></td>
<td></td>
<td></td>
<td>20.3</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>271007–3/07</td>
<td>16/05/2007</td>
<td>314</td>
<td>111</td>
<td>105–108</td>
<td>36.2</td>
<td>Ca–HCO₃</td>
</tr>
<tr>
<td>271007–3/08</td>
<td>10/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>33.5</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>271007–3/09</td>
<td>19/08/2009</td>
<td></td>
<td></td>
<td></td>
<td>30.2</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75012–1/06</td>
<td>3/05/2006</td>
<td>256</td>
<td>45</td>
<td>41–44</td>
<td>13.4</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75012–1/07</td>
<td>15/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>12.1</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75012–1/08</td>
<td>5/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>11.4</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75012–2/06</td>
<td>3/05/2006</td>
<td>256</td>
<td>85</td>
<td>81–84</td>
<td>33.6</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75012–2/07</td>
<td>16/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>30.7</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75012–2/08</td>
<td>5/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>32.1</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75012–2/12</td>
<td>20/02/2012</td>
<td></td>
<td></td>
<td></td>
<td>32.3</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75013–1/06</td>
<td>4/05/2006</td>
<td>287</td>
<td>25</td>
<td>21–24</td>
<td>12.6</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–1/07</td>
<td>17/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>12.8</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–1/08</td>
<td>6/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–2/06</td>
<td>3/05/2006</td>
<td>287</td>
<td>55</td>
<td>51.5–54.5</td>
<td>20.5</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–2/07</td>
<td>17/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>19.9</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–2/08</td>
<td>6/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>15.9</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75013–3/06</td>
<td>3/05/2006</td>
<td>287</td>
<td>110</td>
<td>106–109</td>
<td>29.4</td>
<td>Ca–HCO₃</td>
</tr>
<tr>
<td>75013–3/07</td>
<td>30/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>28.6</td>
<td>Ca–HCO₃</td>
</tr>
<tr>
<td>75013–3/08</td>
<td>6/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>26.2</td>
<td>Ca–HCO₃</td>
</tr>
<tr>
<td>75014/06</td>
<td>4/05/2006</td>
<td>275</td>
<td>65</td>
<td>61–64</td>
<td>18.0</td>
<td>Mg–HCO₃</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Date</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Element</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>75014/08</td>
<td>6/03/2008</td>
<td>14.2</td>
<td></td>
<td></td>
<td></td>
<td>Mg–HCO₃</td>
</tr>
<tr>
<td>75015–1/06</td>
<td>4/05/2006</td>
<td>314</td>
<td>56</td>
<td>52–55</td>
<td>19.0</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75015–1/07</td>
<td>31/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>18.7</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75015–1/08</td>
<td>10/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>14.2</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>75015–2/06</td>
<td>4/05/2006</td>
<td>314</td>
<td>100</td>
<td>96–99</td>
<td>30.9</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75015–2/07</td>
<td>31/05/2007</td>
<td></td>
<td></td>
<td></td>
<td>31.0</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75015–2/08</td>
<td>10/04/2008</td>
<td></td>
<td></td>
<td></td>
<td>28.2</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>75015–2/09</td>
<td>20/08/2009</td>
<td></td>
<td></td>
<td></td>
<td>28.3</td>
<td>Na–HCO₃</td>
</tr>
<tr>
<td>80163/06</td>
<td>5/05/2006</td>
<td>299</td>
<td>60</td>
<td>51–54</td>
<td>14.2</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>80165/06</td>
<td>5/11/2006</td>
<td>196</td>
<td>59.8</td>
<td>53.8–56.8</td>
<td>30.2</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>80165/08</td>
<td>3/5/2008</td>
<td></td>
<td></td>
<td></td>
<td>28.7</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>80166/06</td>
<td>11/05/2006</td>
<td>196</td>
<td>40.5</td>
<td>34–37</td>
<td>22.0</td>
<td>Na–Cl</td>
</tr>
<tr>
<td>80166/08</td>
<td>5/03/2008</td>
<td></td>
<td></td>
<td></td>
<td>20.1</td>
<td>Na–Cl</td>
</tr>
</tbody>
</table>
Table S2 SIROQUANT calculated proportions (wt%) for the different whole rock samples. Well location can be seen in Figure 1. Qtz = quartz, Clay = kaolinite + illite + interstratified illite/smectite, Goe = goethite, Rut + Ana = rutile + anatase, Sid = siderite, Mic = microcline, others depending on samples are Ank = ankerite, Mus = muscovite, Cal = calcite.

<table>
<thead>
<tr>
<th>GW271007 Depth (m)</th>
<th>Qtz</th>
<th>Clay</th>
<th>Goe</th>
<th>Rut + Ana</th>
<th>Sid</th>
<th>Mic</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>84.9</td>
<td>12.3</td>
<td>2.5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>86.0</td>
<td>13.7</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>68.5</td>
<td>31.2</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>82.0</td>
<td>16.5</td>
<td>1.1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>77.6</td>
<td>21.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>85.6</td>
<td>13.4</td>
<td>0.3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>88.6</td>
<td>10.8</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>85.9</td>
<td>13.1</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>84.9</td>
<td>14.9</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>90.0</td>
<td>9.5</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>86.0</td>
<td>13.6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.5</td>
<td>84.8</td>
<td>15.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.5</td>
<td>82.3</td>
<td>16.4</td>
<td>1.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.5</td>
<td>99.5</td>
<td>0.2</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td>88.5</td>
<td>10.3</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5</td>
<td>84.3</td>
<td>14.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.5</td>
<td>88.0</td>
<td>10.3</td>
<td>1.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.5</td>
<td>94.3</td>
<td>5.3</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.5</td>
<td>92.4</td>
<td>6.8</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5</td>
<td>85.2</td>
<td>14.6</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.5</td>
<td>86.8</td>
<td>9.8</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.5</td>
<td>79.8</td>
<td>14.2</td>
<td>2.7</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.5</td>
<td>74.8</td>
<td>19.0</td>
<td>0.4</td>
<td>4.3</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.5</td>
<td>84.2</td>
<td>9.2</td>
<td></td>
<td>0.9</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.5</td>
<td>77.2</td>
<td>19.2</td>
<td>0.7</td>
<td>2.4</td>
<td></td>
<td></td>
<td>0.8 Ank</td>
</tr>
<tr>
<td>83.5</td>
<td>56.6</td>
<td>30.8</td>
<td>0.1</td>
<td>7.5</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.5</td>
<td>57.0</td>
<td>37.8</td>
<td>0.4</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.1</td>
<td>75.6</td>
<td>16.8</td>
<td></td>
<td>3.0</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.5</td>
<td>81.5</td>
<td>10.1</td>
<td>0.2</td>
<td>3.2</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.5</td>
<td>77.1</td>
<td>15.9</td>
<td></td>
<td>4.6</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.5</td>
<td>81.4</td>
<td>9.7</td>
<td></td>
<td>0.9</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.5</td>
<td>77.7</td>
<td>16.7</td>
<td></td>
<td>3.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.5</td>
<td>85.7</td>
<td>5.4</td>
<td></td>
<td>2.9</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.5</td>
<td>80.4</td>
<td>12.4</td>
<td>1.3</td>
<td>1.8</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.5</td>
<td>77.2</td>
<td>12.7</td>
<td></td>
<td>1.9</td>
<td>8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW271012 Depth (m)</td>
<td>Qtz</td>
<td>Clay</td>
<td>Goe</td>
<td>Rut + Ana</td>
<td>Sid</td>
<td>Mic</td>
<td>Other</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>0.5</td>
<td>87.9</td>
<td>9.9</td>
<td>1.6</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>93.0</td>
<td>5.2</td>
<td>1.2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>86.7</td>
<td>12.9</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>88.9</td>
<td>7.5</td>
<td>3.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>85.1</td>
<td>14.4</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>67.8</td>
<td>31.6</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>83.7</td>
<td>15.1</td>
<td>1.0</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>83.7</td>
<td>14.7</td>
<td>1.2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>82.5</td>
<td>16.7</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>85.0</td>
<td>14.0</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>85.7</td>
<td>13.5</td>
<td>0.6</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>86.9</td>
<td>12.7</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>88.8</td>
<td>10.5</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>45.6</td>
<td>54.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>59.6</td>
<td>40.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>90.2</td>
<td>9.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>58.6</td>
<td>41.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>82.4</td>
<td>16.9</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>87.1</td>
<td>10.8</td>
<td>1.6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>87.6</td>
<td>10.0</td>
<td>2.0</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>85.8</td>
<td>13.1</td>
<td>0.2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>56.7</td>
<td>41.4</td>
<td>1.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>42.3</td>
<td>15.7</td>
<td>41.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>90.4</td>
<td>8.2</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>92.6</td>
<td>6.7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>91.8</td>
<td>6.9</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>91.1</td>
<td>8.2</td>
<td>0.1</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>87.1</td>
<td>10.7</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.5</td>
<td>79.4</td>
<td>11.2</td>
<td></td>
<td>4.3</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.5</td>
<td>77.9</td>
<td>10.0</td>
<td></td>
<td>4.9</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.5</td>
<td>65.7</td>
<td>19.7</td>
<td></td>
<td>8.6</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.5</td>
<td>71.1</td>
<td>14.5</td>
<td>0.4</td>
<td>9.7</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.5</td>
<td>70.2</td>
<td>15.0</td>
<td></td>
<td>8.4</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td>87.5</td>
<td>4.5</td>
<td></td>
<td>1.3</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5</td>
<td>79.5</td>
<td>12.7</td>
<td></td>
<td>0.9</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.5</td>
<td>71.0</td>
<td>17.9</td>
<td></td>
<td>3.6</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.5</td>
<td>69.5</td>
<td>18.2</td>
<td></td>
<td>4.0</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.5</td>
<td>68.8</td>
<td>20.7</td>
<td></td>
<td>5.0</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW271008 Depth (m)</td>
<td>Qtz</td>
<td>Clay</td>
<td>Goe</td>
<td>Rut + Ana</td>
<td>Sid</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>62.6</td>
<td>23.0</td>
<td>12.6</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>79.4</td>
<td>18.4</td>
<td>1.2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>59</td>
<td>41.0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>64.4</td>
<td>35.5</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>72.2</td>
<td>27.6</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>80.1</td>
<td>13.0</td>
<td>4.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>82.8</td>
<td>14.1</td>
<td>3.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>80.9</td>
<td>18.5</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>86.1</td>
<td>13.5</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>87.4</td>
<td>11.6</td>
<td>0.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>75.0</td>
<td>23.3</td>
<td>1.2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>87.8</td>
<td>11.1</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>74.1</td>
<td>24</td>
<td>1.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.5</td>
<td>82.8</td>
<td>15.7</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>84.2</td>
<td>13.7</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.5</td>
<td>87.7</td>
<td>10.9</td>
<td>0.8</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.5</td>
<td>90.2</td>
<td>8.1</td>
<td>1.0</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.5</td>
<td>88.3</td>
<td>10.0</td>
<td>1.1</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.5</td>
<td>84.7</td>
<td>13.3</td>
<td>1.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.5</td>
<td>79.4</td>
<td>19.1</td>
<td>0.7</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.5</td>
<td>81.6</td>
<td>13.7</td>
<td>1.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5</td>
<td>81.0</td>
<td>17.3</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.5</td>
<td>80.9</td>
<td>16.9</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.5</td>
<td>69.1</td>
<td>29.2</td>
<td>1.1</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.5</td>
<td>82.9</td>
<td>15.6</td>
<td>0.9</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.5</td>
<td>83.1</td>
<td>14.6</td>
<td>1.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.5</td>
<td>77.4</td>
<td>19.4</td>
<td>2.7</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.5</td>
<td>79.1</td>
<td>19.1</td>
<td>1.2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.5</td>
<td>84.9</td>
<td>13.1</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.5</td>
<td>75.1</td>
<td>20.8</td>
<td>1.0</td>
<td>0.6</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.5</td>
<td>74.1</td>
<td>21.1</td>
<td>0.5</td>
<td>1.0</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.5</td>
<td>56.2</td>
<td>33.8</td>
<td>0.7</td>
<td>2.0</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.5</td>
<td>67.3</td>
<td>24.2</td>
<td>0.5</td>
<td>1.0</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.5</td>
<td>65.8</td>
<td>26.0</td>
<td>0.5</td>
<td>0.8</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.5</td>
<td>70.1</td>
<td>24.7</td>
<td>0.6</td>
<td>0.9</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.5</td>
<td>72.3</td>
<td>23.3</td>
<td>0.2</td>
<td>1.6</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.5</td>
<td>78.3</td>
<td>18.7</td>
<td>0.4</td>
<td>0.8</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Qtz</td>
<td>Clay</td>
<td>Goe</td>
<td>Rut + Ana</td>
<td>Sid</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>69.4</td>
<td>21.4</td>
<td>8.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>69.1</td>
<td>21.2</td>
<td>8.7</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>73.4</td>
<td>24.8</td>
<td>1.5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>59.0</td>
<td>39.1</td>
<td>1.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>72.9</td>
<td>26.3</td>
<td>0.7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>85.7</td>
<td>9.2</td>
<td>4.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>80.0</td>
<td>13.3</td>
<td>5.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>91.2</td>
<td>6.2</td>
<td>1.7</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>87.1</td>
<td>11.5</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>89.1</td>
<td>9.6</td>
<td>0.6</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>80.0</td>
<td>18.2</td>
<td>0.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.5</td>
<td>67.8</td>
<td>30.9</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>87.7</td>
<td>10.9</td>
<td>0.7</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>87.4</td>
<td>10.9</td>
<td>0.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.5</td>
<td>85.7</td>
<td>12.8</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.5</td>
<td>89.1</td>
<td>8.4</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5</td>
<td>86.3</td>
<td>11.5</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.5</td>
<td>83.1</td>
<td>12.6</td>
<td>0.5</td>
<td>1.0</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.5</td>
<td>78.4</td>
<td>10.3</td>
<td>0.5</td>
<td>0.5</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5</td>
<td>72.1</td>
<td>19.9</td>
<td>0.6</td>
<td>0.6</td>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.5</td>
<td>75.5</td>
<td>20.3</td>
<td>0.6</td>
<td>1.0</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.5</td>
<td>59.5</td>
<td>31.4</td>
<td></td>
<td>1.2</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.5</td>
<td>68.0</td>
<td>25.1</td>
<td>0.6</td>
<td>1.2</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.5</td>
<td>74.7</td>
<td>15.5</td>
<td>0.3</td>
<td>0.7</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.5</td>
<td>71.4</td>
<td>23.7</td>
<td>0.8</td>
<td>1.0</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.5</td>
<td>87.6</td>
<td>9.5</td>
<td>0.2</td>
<td>0.7</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.5</td>
<td>80.4</td>
<td>14.4</td>
<td>0.3</td>
<td>0.4</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.5</td>
<td>76.5</td>
<td>17.9</td>
<td>0.7</td>
<td>1.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.5</td>
<td>90.7</td>
<td>7.6</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.5</td>
<td>75.8</td>
<td>18.3</td>
<td>0.2</td>
<td>0.7</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.5</td>
<td>71.5</td>
<td>20.3</td>
<td>0.7</td>
<td>1.3</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.5</td>
<td>74.7</td>
<td>18.5</td>
<td>0.6</td>
<td>1.0</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.5</td>
<td>57.4</td>
<td>29.0</td>
<td>1.0</td>
<td>7.7</td>
<td>4.8 Mus, Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.5</td>
<td>88.1</td>
<td>9.4</td>
<td>0.1</td>
<td>0.8</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.5</td>
<td>86.7</td>
<td>10.3</td>
<td>0.4</td>
<td>0.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.5</td>
<td>76.9</td>
<td>17.2</td>
<td></td>
<td>0.9</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.5</td>
<td>80.6</td>
<td>12.6</td>
<td>0.5</td>
<td>1.0</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148.5</td>
<td>86.0</td>
<td>10.3</td>
<td>0.4</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S3 Estimated average vertical hydraulic conductivity, \(K_v \), between screens (or the ground surface) where SWL’s, apparent ages and samples are available.

<table>
<thead>
<tr>
<th>Well group number</th>
<th>271008</th>
<th>271007</th>
<th>75015</th>
<th>80163</th>
<th>75013</th>
<th>75014</th>
<th>75012</th>
<th>271009</th>
<th>80166</th>
<th>80165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface AHD (m)</td>
<td>324</td>
<td>314</td>
<td>314</td>
<td>299</td>
<td>287</td>
<td>275</td>
<td>256</td>
<td>254</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>No. samples</td>
<td>n = 2</td>
<td>n = 2</td>
<td>n = 3</td>
<td>n = 1</td>
<td>n = 3</td>
<td>n = 2</td>
<td>n = 3</td>
<td>n = 2</td>
<td>n = 2</td>
<td>n = 2</td>
</tr>
<tr>
<td>Average Kv (m/s)</td>
<td>3.1E–08</td>
<td>1.9E–08</td>
<td>9.9E–10</td>
<td>1.50E–08</td>
<td>6.0E–08</td>
<td>4.5E–11</td>
<td>4.8E–08</td>
<td>4.2E–09</td>
<td>2.1E–10</td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>8E–09</td>
<td>5E–09</td>
<td>1.6E–10</td>
<td>n/a</td>
<td>2.7E–08</td>
<td>1E–12</td>
<td>4E–09</td>
<td>2E–10</td>
<td>6E–11</td>
<td></td>
</tr>
<tr>
<td>Shallow screen AHD (m)</td>
<td>277.5</td>
<td>283.5</td>
<td>260.5</td>
<td>246.5</td>
<td>264.5</td>
<td>212.5</td>
<td>213.5</td>
<td>n/a</td>
<td>160.5</td>
<td>140.7</td>
</tr>
<tr>
<td>No. samples</td>
<td>n = 1</td>
<td>n = 2</td>
<td>n = 3</td>
<td>n = 2</td>
<td>n = 2</td>
<td></td>
</tr>
<tr>
<td>Average Kv (m/s)</td>
<td>2.8E–10</td>
<td>7.4E–10</td>
<td>9.6E–11</td>
<td>5.6E–08</td>
<td>6E–09</td>
<td>3.5E–11</td>
<td>6.7E–10</td>
<td>3E–12</td>
<td>9E–11</td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>n/a</td>
<td>6E–11</td>
<td>8E–12</td>
<td>6E–09</td>
<td>6E–09</td>
<td>3E–12</td>
<td>9E–11</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Intermediate screen AHD (m)</td>
<td>217.5</td>
<td>248.5</td>
<td>216.5</td>
<td>234</td>
<td>173.5</td>
<td>158.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. samples</td>
<td>n = 3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Average Kv (m/s)</td>
<td>2.4E–10</td>
<td>2.9E–10</td>
<td>3E–11</td>
<td>3E–11</td>
<td>3E–11</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>1.2E–10</td>
<td>1.2E–10</td>
<td>1.2E–10</td>
<td>1.2E–10</td>
<td>1.2E–10</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Deep screen AHD (m)</td>
<td>207.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
<td>179.5</td>
</tr>
</tbody>
</table>

Estimation of \(K_v \) was simply based on the Darcy equation:
\[v = -K_v \Delta H \Delta L \]

Where Darcy’s specific discharge, \(v \), is proportional to head differences \(\Delta H \), and (for vertical velocities) inversely proportional to the difference in depths, \(\Delta L \). Apparent vertical velocity between the middle of each screened interval or the soil profile is simply \(\Delta L \Delta \tau \), where \(\Delta \) is the difference in corrected ages. Assuming uniform sandstone porosity, \(\theta \), of 15%, to convert vertical velocity to specific discharge gives:
\[\Delta L \Delta \tau \theta = -K_v \Delta H \Delta L \]

Therefore:
\[K_v = \Delta L \Delta \tau \times 0.15 \]